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Hard rocks exhibit brittleness under the influence of high intensity loading; fracture occurs 
by tbe fonuation of a large number of cracks. In addition, such rocks have elastic-plastic 
properties, In this paper, the simplest model is constructed for mathematical description of 
the deformation and motion of this kind of material. In the framework of this model, the proh- 
lem of the effect of the explosion of a concentrated explosive charge in a brittle rock is ex- 
amined. In Section 1 general considerations are presented for the construction of a matbe- 
matical model of the medium. The remaining sections contain the formulation and solution 
of the problem of the effect of the explosion of a concentrated charge in a hard rock. The 
analysis of the basic problem for various typical cases is given in Sections 2 and 4. ‘[‘he 
energy equation is examined in Section 3. 

1. In materials which do not have pores (including tbe majority of bard rocks), brittle 
fracture can occur by the formation of tension cracks and shear cracks. Moreover, in porous 

brittle rocks (e.g. coquina), failure (fracture) can also occur under hydrostatic compression 

because of failure of the brittle porous skeleton. 

The critical state which precedes actual failure by the formation of cracks (or by crusb- 

ing in the case of porous rock) can be described in the form of some invariant expression 

which relates the components of the stress tensor - the failure criterion. In the general case 

for an isotropic material this relation is written in the form 

@ (117 12, 19) f 0 
(1.11 

where It, I,, and i, are independent invariants of the stress tensor (these may be, for ins- 

tance, the principal stresses @t, 02, C& If the state of stress of an element is such that the 

inequality holds in the condition (1.11, then we shall consider that tbe element is in a sound 

state. When the equality is attained in (1.1) the limit of strength is reached in the element 

and it fails; i.e. cracks develop in it. As the boundary conditions of the problem change. 
failure beginning at some points in the volume of rock under consideration will, in general, 

spread to other elements. In each element, just before failure the equality of (1.1) will be 

attained, The set of points of tbe volume of rock in question at which the equality of (1.1) 

is reached and at which failure is about to occur forms the boundary between the intact part 

of the rock and the failed part. 

Two types of failure propagation are possible. In one case tbe elements for which the 
equality of (1.1) is reached are located on a line, so that as that line moves through tbe vol- 
ume of rock a macroscopic crack is formed. In other cases these elements occupy a two- 
dimensional surface which, as it propagatee, shifts a three-dimensional volume of material 
from tbe continuous state to tbe failed condition. In the first case tbe suitable boundary con- 
ditions to be formulated on tbe crack surface do not coincide with (1.1) taken with the equal 
sign. This is the correct condition only at the edge of the crack. The condition at the edge 
of a crack in a brittle elastic material can be formulated somewhat differently by specifying 
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the character of the sinr lar’t in the framework of the linear theory of elasticity. This 
case has been fully stu led 1 

t 3 
and will not be considered here. In the second case* the 

equality of (1.1) is satisfied on the surface which separates the failed portion of rock from 
the intact part as a limiting condition which is approached as we take points closer and 
closer to the surface from the intact part. In the present case, mauy fine cracks are formed 
behind the failure surface. The failed material may, therefore, also be considered as a con- 
tinuous medium; i.e. it can be described by equations of continuum mechanics. 

The e uality of (1.1) is a boundary condition for the intact region; it is attained on a 
surface w rch is unknown in advance and is determined in the course of the solution of the Ii 
problem. The motions and deformations on the two sides of this surface are described by 
different systems of equations for the int8ct and failed regions; the e 
satisfied in these regions. Only in the special case in which lastic 

ality of (1.1) is not 
! . K”ow occurs in the 

failed region and when the yield condition coincides with (1.1 1s the equality of (1.1) sat- 
isfied in the region behind the failure surface as a yield condition, if plastic flow occurs t 
there. 

In general, the material in both the intact and failed states will be described by the eq- 
uations of elastic-plastic deformation of a medium. The mechanical characteristics (con- 
stants, parameters and functions) will be different in the intact and failed states. A surfsce 
separating the two ststes will be called 8 failure front. It will generally be 8 surface of 
strong discontinuity (a shock front) or a contact discontinuity. 

In all cases, if the properties of the failed and intact materials 8re known, the natural 
condition8 of compatibility at the failure front (the conservation laws) together with the 
equality of (1.1) form 8 ayetem of boundary relations formulated on the surface of discon- 
tinuity (the failure front) which is sufficient for the unique solution of the problem as 8 
whole. 

Let us take 8 concrete example of the condition (1.1). If the prfnci 
CI~ in the problem c8n become tensile, then the following condition WI 1 be the simplest nat- +P 

al stresses 171, (12, 

ural condition for an isotropic material 

Qt d o* (i=1,2,3) (1.2) 

If the e uality 
P 

is attained in any of these relations, fracture occurs on the corresponding 
princip8 plane, 8fter which the principal stress on this plane becomes zero. If, however, 
the principal stresses are negative, i.e. are compressive, then it is possible to consider 
that failure take8 place by means of slip along the planes on which the maximum shear 
strees Bets, or else on the octahedral planes. For 8n isotropic material the condition (1.1) 
reduces to the following relations corresponding to these two possible assumptions: 

2r* = I6j --Q1<2t* (i, j, k = 1, 2, 3) (1.3) 

or 

z ocl = ii/q -ts22 fS23) = ma2 G T, 

Si =bi $-Fe p = --'/%(61+~Fj+Q3) (1.4) 

In this way, the condition (1.1) is reduced to the relations (1.2) and (1.3) or to (1.2) and 
(1.4). The inequalities (1.2) and (1.3) d e f ine a region in the space of principal stressesbt, 
r_r2, us which ia bounded by the semi-infinite hexagonal 
the case of (1.4) the prism becomes a circular cylrnder. f 

rism (1.3) and the plane (1.2). In 
f 8 state of stress is produced at 

the points of a failure front as these points are approached from the intact material which 
corresponds to one of the equalities of (1.21, then failure will be accompanied by the forma- 
tion of tension cracks oriented along the correspondin 
state of stress corresponds to points of the prism (1.3 B 

principal planes. If, however, the 
or the cylinder (1.41, then shear 

creeks will be formed on the corresponding planes. For the first case, the corresponding 
normal stress will be absent in the failed rock mass until the cracks close up (such closing 
of cracks may or may not ensue depending on the boundary conditions of the problem). Be- 
fore such closing of cracks, the failed material will be described by a system of equations 
which are not the s8me 8s the equations for the intact rock mass. After closing of the cracks 
the equations will be the same. 

It 18 also possible that closing of the cracks does not occur, or that, on the contrary, 8 
second failure may take place which now corresponds to Eqs. (1.3) or (1.4). The equetions 
describing the m8teri8i which has failed 8 second time are again altered. 

In the simple8t case it may be assumed that the equation8 describing the failed material 
for failure in accordance with Eq8. (1.3) or (1.4) are the same independently of whether this 
is 8 first failure or one which has followed a previoni failure of the type of Eq. (1.2). We 
8i18k1 take for these equdions the elMtic-plastic model for 8 soft soil considered in [2], be- 
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ginning from the assumption that when the material fails many fine cracks are formed which 
break up the material into pieces which are small compared to the characteristic dimension 
of the problem. In this way the properties of the material approximate those of a dispersed 
uncemented soil. In this theory, for nonporous rock in the intact state the volumetric com- 
pressibility will be considered to be reversible and, in the simplest case, linear, The yield 
condition may be chosen in the usual form I = F(p), 
friction after failure is such that it can be d’ 

and in the special case when internal 
escribed by the failure condition produced at 

the instant of failure, the yield condition can be taken the same as the failure condition, 
i.e. in the form (1.3) or (1.4). 

The failure criterion for porous rocks in the initial state will be somewhat different. 
Failure of the skeleton will take place in such rocks under purely hydrostatic compression. 
This failure will be gradual and will occur over some range of pressure, so that the strength 
of the material will decrease with increasin 
sidered that the condition (1.2) is retained, % 

hydrostatic pressure. It may therefore be con- 
ut that in the conditions (1.3) and (1.4) the 

quantity 7+ must be regarded as a function of p which is constant as p varies from small 
magnitudes up to some value p1 at which failure of the skeleton begins, and which decrea- 
to zero as p increases from 
the material becomes a 81111 B 

1 to the value p2 at which the skeleton fails completely and 
. 

Moreover, the volumetric compressibility of such materials in the “unfailed” state in 
the pressure interval PI,< p Q p 2, and also in the failed state, will no longer be reversible 
or linear, so that the failed material will be described by the equations of a soft soil [2]. 
Here the yield criterion cannot be taken the same as the failure criterion, since in the fai- 
lure criterion (1.4) dTJdp,< 0, while the yield criterion written in the form I,= F(p) must 
satisfy the relation dF/dp >,O. 

We remark that, generally speaking, the last case also includes all soft soils which ex- 
hibit cohesion. However, for these p 1 and p 2 are very small. Therefore, in the constmction 
of a model of such soils t 

i! 
e strength 

P 
roperties for rather brittleness properties) can be 

neglected as was done in 21. It shou d be kept in mind that for soft soils having cohesion, 
the strength resisting tensile failure can increase in the 
irreversible compression;so that the condition (1.2) 

recess of plastic deformation and 
shou d be retained for these materials, P 

assuming that O+ depends on the amount of residual densification compaction 8+, i.e. we 
should set 

o* = Q* (6,) (1.5) 

Experiments investigating loess soils under the action of an explosion [3] actually ex- 
hibit the phenomenon of brittle behaviour when blast waves propagate through the soil. Set- 
tioning of the explosion cavity after the soil motions had ceased showed a considerable vol- 
ume of soil around the cavity permeated with a large number of cracks which were oriented 
in the radial direction [3]. This is indicative of the fact that the loess had enough cracking 
strength to develop considerable tensile stresses when the wave passed. After these attai- 
ned the limiting value; the soil mass was broken up by radial cracks. 

To complete the system of equations of the-model of hard brittle rocks, specific equa- 
tions are required for the intact material fissured by tensile cracks The simplest assumption 
consists in the adoption of the linear equations of the theory of elasticity for the intact mass 
mass and some invariant of these for the mass which has undergone failure by cracking in 
tension. The character of this variant is determined by the fact that one of the principal 
stresses is zero in the failed part of the rock. Therefore, the equations of elasticity for 
this rock mass must be written for a smaller number of spatial dimensions; that is, equations 
of the type used for a state of plane stress or the equations of the theory of elastic rods. 

The assumption of linearly elastic behavior of the intact material may not correspond to 
the experimental data (there is some experimental information on this point [4]). 

However, consideration of plasticity in the intact mass will, in general, introduce no 
essential difficulties and can be included in solving problems. This will be shown below 
when a specific problem is considered. 

We remark that the model of a brittle material which has been constructed is one in which 
the energy, from a thermodynamic point of view, is decoupled into a mechanical and a ther- 
mal part. The thermodynamic correctness of the theory can be established in the same way 
as was done for the model of a soft soil. An additional factor which should be considered 
here in the treatment of the energy equation is the energy expended in the formation of the 
crack surfaces (the surface energy of the cracks). Later on, in the examination of a speci- 
fic problem, an actual estimate of the role played by surface energy in the failure process 
will be made. 

The model which has been constructed here, like the model for a soft soil, is a limiting 
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case for the consideration of rapid 
& 

roceases (explosions and shocks) and for static proces- 
ses. It does not contain constants om which quantities with the dimensions of length or 
time can be formed. It therefore admit 
iing as the model for a soft soil (see f 

of the ssme similarity conditions and rules of scs- 
211. 

Experience in the blasting of ledge rock [S and 61 reveals that this similarity rule actu- 
ally holds, Therefore, in this respect, the proposed model corresponds to the real proper- 
ties of hard rocka. 

In conclusion, we remark that the original motivation for the theory which has been out- 
lined above was prompted by the experiments of Adushkin aud Sukhotin 271, our experiments 
with loess [3], and also the contributions [S and IO] in which special cases of material 
which fails in a brittle manner were considered. The theory developed in this paper is a 
natural generalization of the model for a soft soil [d and of the results of the references 
quoted. 

2. Let us consider a spherical cavity of radius ro in a space filled with a homogeneous, 

isotropic rock which is at rest and is compressed by a hydrostatic pressure po. The cavity0 

is filled with an explosive charge which becomes a gas having an initial pressure so0 after 

detonation. Recause of this pressure the rock surrounding the cavity is set into motion, as 

a result of which, if poo is large enough, a part of the rock will fail. However, at large dis- 

tances from the cavity the stress waves will decay. 

For the various requirements of mining, seismic prospecting and other applications, it is 
of interest to determine the volume of rock which fails, the character of the failure, the par- 
ameters of the waves emanating from the focus of the explosion, etc. as functions of the 
properties of the rock, the explosive charge and the initial stresses in the rock. This prob- 
lem has been studied in schematic form in the pa ers 18 and 91 and in [IO] for the static 
case when the pressure in the cavity increases s owly from a value equal to the initial pres- .P 
sure in the rock. A formulation of the problem is presented below, based on the mathemati- 
cal model developed in Section 1. Under certain natural assumptions about the properties of 
the medium, the problem reduces to an initial value problem for a system of ordinary differ- 
ential equations. 

We shall consider that the deformed material in the intact state is governed by Hooke’s 

law 

where X and p are the Lam& constants; r is a Lagrangian coordinate; u is the radial displace- 

ment; Or, au, and (I~ are the stresses referred to spherical coordinates These are principal 

stresses by virtue of the symmetry of the problem. 

The equation of motion has the form 

(2.2) 

where p is the density of the rock. 

Substitution of the relation (2.1) into (2.21 and the introduction of the dimensionless vari- 

ables 

\‘u 
%I 

==---y, 
p’o- 

pc; = A. + 2p (2.3) 

reduces Eq. (2.21 to the form 
r?“[’ 

_=?K+&~_fU 
Jr’ (2.4) 

The solution of this equation corresponding to a diverging wave is given by Formula 

lj. =11 !’ (r - *) (2.51 
x 
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where j(& is an as yet arbitrary function of its argument. 

Substituting (2.5) into (2.1) and (2.3) we obtain for the stresses and displacement(*) 

br = - pco2 --2)+ ‘Ira[~f’(T--)+~f(t--)l}--po 

bg = - pco 2 1 - 27% 

{ 
-y--f”( z-4-272 _!- rz2 fl(f--5) $_$f(T-“)I)-PO 

u = r. 
[ 
$f? --) + -gf (t-x)] (2.6) 

If put, is not very large, failure will not occur. In view of the smallness of the displace- 

ments the cavity expands only slightly with time and the pressure in it does not vary sig- 

nificantly, In this case the condition which determines the function f(t) in (2.6) is written 

in the form 

6, ]iW. = - PO0 (2.7) 

Substituting the first of Eqs. (2.6) into (2.7). we obtain a differential equation for j(t). 1 ts 

solution for the natural initial data 

f (-1) = 0, f’ (-1) = 0 (2.8) 

which follow from the initial condition 

u (r, 0) = 0 (2.9) 

has the form 

f(E)-++ exp [- 2=+ ‘)I sin [27 1/l - 7” (E + 1) + pl) 
VI-V 

(2,10) 

sincp = vl --rat coscp = 7, p = (PO0 - Po)/P”02 

In order to establish the conditions under which failure occurs, we now turn to the fail- 

ure criterion. In the present case, by virtue of the symmetry of the stress situation there are 

only two essentially different stress components cr, and ag. The failure criterion is there- 

fore formulated in the form of a relation between these quantities. It is convenient to repre- 

/P 1 
Fig. 1 

sent the failure criterion graphically. In Fig. 1 the straight- 

line seeplents BC and B ,C correspond to the condition 

(1.2). The lines BA and B,A 1 correspond to the condition 

(1.3). If the condition (1.4) is used, these lines are dis- 

placed somewhat. However, the displacement is very 

slight (instead of - 27+, the intercepts on the axes will 

be - 37+/o, which differs from - 27* by 6%). There- 

fore, in the present problem, the adoption of (1.3) or (1.4) 

gives practically identical results. From the solution of 

the elastic problem (2.6) and (2.10), we have 

be I ~~a~Pe,~=-(1--r2)Poo-2r2~“<0(2 11) 

X=1 . 

It is clear from this that under the condition 

PO0 < PO + y-22, (2.12) 

failure will not occur at the initial time, when motion begins. 

If, however, the inequality (2.12) is violated, then failure by the formation of shear cracks 

will take place around the explosion cavity at the very start of the motion of the rock. It is 

l ) y is the ratio of the S-wave velocity to the S-wave velocity; y 2= ,u/(h + 2~). (Transla- 
tor’s note) 
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then necessary to construct the solution for the failed material in the vicinity of the cavity 
and to join it up to a solution of the type (2.6) at the failure front, which, hy virtue of the 
symmetry of the problem, will be an expanding sphere. 

We shall first consider the case in which the condition (2.12) is satisfied and we shall 
explain how the motion which is described at short time by Eqs. (2.6) and (2.10) develops 
for later times, The stress U, on the cavity boundary does not change with time; it remains 
equal to poo. The stress erg at the same place varies with time according to the formula 

Qe 1x-1 = 2r2 (PO0 - PO) -- PO0 + 

+ 9 (Poe- PO) [I- ““;ztT’ sin (27 1/w-_ -/- ‘p + *)] (2*13) 

sin$=2yfl-yr”, cosq== 1-2p 

It is clear from this expression that the stress ~g decays exponentially and oscillates ab- 
out the limiting equilibrium value 

~ecX3 = ao(l f c=> = - PO0 -f- $5 (POD - PO) (2.14) 

For ease of visualization of the arguments which follow, we shall represent the set of 
initial valnee of u, and ~g given by Eqs. (2.111 and the limiting values given by Eq. (2.14) 
aud byo m=u 
straight fine 

= 
Ee, 

- poo on the O, - 00 plane for fixed p,, aud variable pot,. In Fig. I, the 
represents the initial state, fX)t the limiting state. It is obvious that for 

poo > p. we have that ogm > ago, and for poo <pot G 
f2.12f and the condition cr, = - poo < (I+ are fF “q* Therefore, if the condition 

satiefie , I.e. 1 the initial point is within the 
then for poo > p. the stress 00 (1, 7) increases with time initially, it de- 

remains inside the region does not occur on the cavity boundary. If, 
however, the values correspqnd to a point beyond this region then at some time preceding 

“~~~~~~t~~~~~‘~~~~~~rat becomes zero for 
failure begins at the cavity boundary. 

2~~lI-y~z~+qk=rc (2.15) 

The corresponding value of 08 is 

a,, = GFJ (I, z,) = 

= - (I-2y2) poo - 2yzpo +‘1/2 (3-4 y2) (PO0 - PO) (1 + e+Tl) (2*16) 

For ~0~ - PO > 0, we have 08, > CY~, i.e. @et = max a&, 71, and for poo - pu < 0, oel< 
<ag , i.e.agt 
fixe B 

= min oe(l, 7). The locus of the points or =ert = cr e= - pot,, @e= Tel for 
p. and variable p u. is shown on Fig. 1 as the straight lrne Ffit. 

If poo is such that the point crrt, 00~ is located on the segment FF, failure does not oc- 
cur end the solution is completely described by Eqs. (2.6) and (2.101. lf, however, po + y’ 

7* > POO>POOP~~ -(I+ < poo <poop t (where pooP and poop 1 are the values of poo which 

correspond to the point@tt, ae 1 in the locations F and F1 ), then beginning at a time 7%< rt, 
where 71 = ~&pool is the instant at which the point o-r, oe moves onto the boundary of the 
region ABCB ,A 1, failure starts on the cavity boundary and any further consideration of the 
solution must tahe the failure into account. We find the value of poopt from the relation 

6r, - Go, == 2T, (2.17) 
The value of poop is determined in two different ways depending on whether the point F 

is located on AB or on EC. In the first case, poop is found from the relation 

br, - 60, = - 22, (2.18) 
and in the second case from the relation 
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Gtl, -= a* 
From F,qa. (2.17) and (2.181, we have 

(2.19) 

&OF, = PO - 
** 

+P + P/4 - r2) [(I + exp (-- WWI 
(2.20) 

PooF = po + 
f* 

~2 + (e/d - r2) [(1 + exp (- 2T%r)] 
(2.21) 

We obtain from Eq. (2.19) that 

hoF=po-+ 
zC%+IJd 

1 + (3 - 4~~) exp (- 2r221) 
(2.22) 

Tbe value po = po+ which separates the regions of values corresponding to Eq. (2.21) 

and to (2.22) is obtained by equating the right-hand sides of Eqs. (2.21) and (2.22): 

PO* = -6*$2? 
1 + (3 -4-P) exp (-- 2T2r1) 

* 3 + (3 - 4~~) exp (- 2r221) 
(2.23) 

Finally, we note the value po = go** obtained from (2.20) for poop1 = - 01 (for this val- 

ue, the point F1 is at 8) 

** - 2 
PO -- 6, + 2% * 3-j-(3- 4?) exp (-- 2Y%) 

(2.24) 

Ifp, <Pi) **, the point F, falls on the segment B, C, but this means that for -0, < poo < 

< p. failure does not occur at the cavity, and only for po = - V+ are the particles which ac- 

tually form the cavity well tom away from the rock mass. The stress there then falls to 

zero, so that the motion that occurs corresponds to an initial value of pressure equal to 

poo = 0. The value of ogt which corresponds to this value of poo, for po = po**, is 

% ** = 1/z (T* (3 + a) - 22,, u f (3-4 p) exp (-2fzJ (2.25) 

Since Ug1* * > - 27+, the point or 1 = - poo= O,O~~ = ugl** is located above the line AB 

In this case, if u@~*+ < #+, the motion which occurs does not lead to failure at the cavity. 

If, how ever, 06 ** > (I+, then at some instaat failnre begins at the boundary by the fo~ation 

of radially orieited tension cracks. Such a failure will also take place in the case aeX** < 

< OI beginning with some value of p. < po**. 

These cases exhaust all the possible situations ariain 
of the parameters poo, p 

from all possible specifications 

of no interest for the pro 
, y, o+, T+ . We note that althou 

% 
J the case in which poo <p. is 

lem of an explosion, the qualitative peculiarities in this case are 
quite curious. Indeed, if p,, > h **, then in this case the removal of the initial stress on the 
cavity surface can lead to shear failure. However, if p. < pa**, then a tensile spherical 
crack may occur at the initial time, after which a failure front causing radial tensile cracks 
to form may propagate outside this spherical crack. 

We also note the following. For static loading, failure obviously occurs only if the point 
u,, o,g which moves along the segment DD t reaches an end point of the segment. Since the 
point F, which corresponds to the occurrence of failure under dynamic conditions, is loca- 
ted above point ii on AE, and the point F1 is below D, on A ,B 1r then under dynamic condi- 
tions the capability of the medium to withstand pressures applied to the cavity ia lower than 
under static conditions for poo > pa, and is higher for poo <po. The situation is analogous 
in the case when both the points LLJ and F, or only F, lie on the segment BC, or when D, 
lies on B C and Ft remains on A $3,. When the points D, and F, both fall on B, C then the 
static an dynamic strengths turn out to be the ssme. d! 

The question of the possibility of a failure occurring at the surface of the cavity has been 

studied in the preceding analysis. However, generally speaking, failure can also oocur far 

from the cavity. It is therefore necessary to establish where the point 6,. CT@) determined 
from the solution (2.6) snd (2.10) passes over the boundary ABCB ,A 1. To solve this problem 

in its general form is very difficult, but it is possible to form&ate a procedure for the solu- 

tion which can be carried out numerically in each particular case. 

Failure can. begin at some internal point of the region 
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% > 1, grz-x>-1 
if one of the following inequalities is satisfied there 

co (5, E) = rJ*t 0, (2, E) = o*, ur (G E) - (Je (5, E) = f XT* 

By computing the derivatives with respect to x of the left-hand sides of these expressions 

for [= const, and setting these equal to zero, we obtain quadratic equations for X. 

Thus the quantities u&, 4‘1, a,.&, [l, and 0,(x, (1 -o&v, ~$1 have, in general, two ex- 

trema on each characteristic [= const and tend to - po or to zero as x + 00. Therefore, if 

for a given t failure is not reached on the cavity boundary x = 1, then it will be reached 

first at one of these two extrema. It is possible to write out explicit formulas for these ex- 

trema. There is, therefore, no difficulty in calculating their values in any particular case 

and in finding for all values of [ the p oint at which failure begins. The extremal points are 

determined by Formulas 

%,2 = 
WV (4) + l/Jr2 Ii’ (5)12 + W2 (I- 2r21 f (0 f” (41 for be (2.26) 

(1 - 2r21 f” (4) 

Xl,“, = 472 
- I’ ce, + v U’ K)12 - f (4) 1” (4) for 6? (2.271 

1” (4) 

x1,2 = 3 
-f’ w + v-v WI2 - f (El 1” (5) 

1” (5) 
for or - a0 

(2.28) 

Fort< [t let the solution (2.61, (2.101 nowhere attain a failure condition, and let the 

condition determined by one of the Eqs. (2.26) to (2.281 be satisfied for the first time for 

t=& andx=rt. It is then obvious that for nearby values of (> f, an entire segment of 

each characteristic [= const will correspond to points o,, 08 which fall outside the region 

ABCB, A,, and that the failure condition will be satisfied at the ends of these segments. 

The set of these end points forms a line passing through the point (= [t, x = x1 which 

remains in the region [> [t and is tangent to the characteristic e= [t at this point. On this 

line there can exist a point x = xl > 1 in the region x < x1 at which the line is first tan ent 

to a characteristic of the second family of Eqs. (2.41, i.e., to the line T + x = const = b: s’- 

2x2. The part of this line located between the two points x1 and 22 is the true failure front, 

because, in the first place, the failure condition is satisfied as this line is approached from 

the intact region and, secondly, at each point of the line the characteristics of both families 

drawn backwards, i.e., to the x-axis, are located on one side of the line (the line is space- 

like). Therefore, the solution of the problem at points of this line as they are approached 

from below (from the side on which the x-axis is located) is uniquely determined by Eqs. 

(2.61. The continuation of the solution beyond the end points at which the line is tangent to 

the characteristics of Eq. (2.41 and where it is no longer determined by Eqs. (2.6) will be 

discussed somewhat later. 

The further investigation of the solution of the problem will be carried out in the follow- 
ing way. First the solution will be constructed only for cases in which failure begins at the 
cavity after which, by using the relations (2.26) to (2.28) and the reasoning related to them, 
it will be possible to determine whether independent origins of failure occur outside the cav- 
ity. If these do occur, then until the failure fronts emanating from these origins begin to in- 
teract with the solution constructed without taking account of their existence (the nature of 
this interaction will be described in detail later), the original solution will be valid. From 
the time that the interaction starts, the procedure for continuation of the solution becomes 
more complicated. 

Let us begin with the case in which failure by the formation of radial cracks is initiated 

at the cavity, i.e., when the point F falls on the segment BC and poo lies in the range ~00~ 

< poo < pOOB, where p OOB is the value of poo corresponding to the point B. The time 72 at 

which the failure begins is determined from the condition udl, 721= u,. From that time on, 

a spherical failure front propagates into the medium. The variation of the radius of this front 
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with time, x = r,(7) is to be determined. 

In the region r > x t (7) the &ition is given by Eqs. (2.6) as before. However, in these 

relations the function f(e) is no longer determined by the relation (2.101, but is found from 

the condition of matching of the solution (2.6) with the solution in the region I,< x < %t(7) 

which will now be determined. 

Assuming that in the region l( x < rl (7) a large number of fine cracks oriented in the 

radial direction are formed when the failure front passes, we shall consider that the motion 
in that region can be described by equations of a continuum. The equation of motion will 

have the form 

(2.29) 

since a,p= 0 there. We obtain a second equation in the form of Hooke’s law for the “bars” 

into which the material is broken up 

where E is Young’s modulus 

E = (h + 2f.t) Tat3 -4V) = (A + Q&1) (1 t,“)$-“’ 
1 - ra 

(2.31) 

and (I is Poisson’s ratio. 

Equation (2.30) is obtained from Hooke’a law in its full form 

c’, = J.C (8, f 2%) + 2pe, - po, % = h (8, + 289) + 2fbee - PO 
under the condition og I 0 by eliminating the strain .Q which is, of course, no longer equal 

to u/r. Substituting (2.30) into (2.29) and using the dimensionless variables of (2.3), we ob- 

tain 
(2.32) 

P PO (2.33) 
o== 

where cI is the acoustic bar velocity @ c i 2 = E). The general solution of (2.32) is 

u = ; Vl (4t --2)+f2(qf+41 +3*3 
where f,(ct) and f&f,) are arbitrary functions of their arguments. 

The radial atress u, in the failed region is (2.35) 

Clr = - p?o 
s Y(3-41”) 

I-_r2 [ 
fi(Q? -X) -ifa'(P'c +4 

X 

+ f1W--r) + fa(F + 41 

x2 1 
Thus, for times T > r2, the solution in the intact material will be descdbed by Eqs. 

(2.6) and in the failed material by Eqs. (2.34) and (2.35). Three uadeterminad functions f, 

ft and f2 are contained in these equationa. They must be found from the conditions of con- 

tinuity at the failure front .IC = x~(T), where x&7) is also an unknown function which is to 

be determined, and also from the conditions at the cavity. 

The continuity conditions consist of the usual conservation laws on a surface of strong 

discontinuity and the failure condition which must be satisfied on the side of the surface 

toward the intact materiel. This last condition is written in the form 

~~(~)-272~~+~]=_z*_po, z, =_z& (2.36) 

As is astral when using Lagrangian coordinates, the law of conservation of mass follows 
automatically from the natural condition of contfnuity of diaplacementa and need not be writ- 

ten oat. However, it is necessary to write down the condition of continuity of displacement 

which bee the form 
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I’ (E) + T$ f (8 = fl (El) + f2 (E2TS Pn 212 3 - 4p 

E, = qz - Xl (4, E, = qt + :rz (4 
The impulse-momentum theorem is written in the form 

- a,, + a,, z p $- (u1- II*) 

or, after substitution of (2.5). (2.61, (2.34) and (2.35). 

I”(E) + 4r2[Y&fi(E) + $1 (E,] - 

(2.37) 

(2.38) 

__ -p (2 - 4r*) 
1 ---(t {rlfcaH21(E2) + -&V&l) + f2 (t2)1} + POZl = 

= Jl {m + T&r! (El--Q [fl'(El) + r2q2ij (2.39) 

Turning now to the formulation of the condition at the cavity, we shall make one remark. 
We adopt the usual assumption of adiabatic, quasi-steady change of state of the detonation 
products of the explosive as the volume of the cavity changes(+). The adiabat can be appro- 
ximated by two relations of the form pf’x = const for the two ranges of variation of the pres- 
sure the exponent x is close to 3. Therefore, although in the propagation of the failure front 
at a considerable distance the motion of the cavity wall will be small, the change in pres- 
sure in the cavity may be considerable because of the large size of X, and these changes 
should be taken into account in the boundary condition at the cavity. 

With this in mind, we write down the condition at the cavity in the form 

^iy;;') Ih'(E1")-ffz'(EaO) + fl(E1") + fz(E2O)l = 

z P",, 1 + fl (LO) + fz(E2") + &]-3x = 
1 

~~oojl--~if1(51”)+f2(52”) + &]} 
I),,=~, &Ox qz-I, E2”-qT+l 

The relations (2.36). (2.371, (2.39) and (2.40) form a complete system of equations for 

the determination of the four functions f(c), ft((t), f&x) and 1: t(7). We note that the stress 

cr, and, therefore, the velocity v at the failure front are not continuous, for the addition of 

one of these continuity conditions would overdetermine the system (2.36) to (2.39) and make 

the problem insoluble. The failure front is a real shock wave. Therefore, the continuity con- 

dition on a, adopted in the articles [8 and 91 is incorrect in the general case. 

Let us now examine the relations at the failure front in greater detail. Differentiating the 

condition of continuity of displacement, we obtain 

drl ( aua 
+-v2=y&- ar 

au1 --- 
ar ) 

The subscripts 1 and 2 denote quantities in the intact aud failed materials, respectively, 

Substituting (2.41) into (2.38). we obtain 

(2.42) 
p (au8 1 a? - au1 j ar) , 

Then, by eliminating the quantity u/r from (2.1) for ~g= o+. we find 

l ) This condition is qufta a good approximation in the case of soft soils [ll]. In the prement 
cane, when the l conatic velocity is of the order of 5000 meters/aec, and the failure pro- 
cess involves a volume of rock extending to several charge radii, the applicability of this 
condition is not obvious, atd wave motions in the detonation products may prove to be 
important. 
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and using (2.30). we have forcrr2: 

(2.44) 

From the equations which have been obtained, it is clear in particular that if o t - v2 = 
= 0 then also du ,/I% - au,/& = 0, which is possible only for U+ = 0. In all other cases the 

failure front is a shock wave. We obtain from (2.42) and (2.44) that 

(2.45) 

If du2/& - du ,/& > 0, then it follows from (2.42) that - cr,t > - crrz, and since the 

change in density is determined by Formula 

Ap--$-% -_ 
P P 

aud at the failure front 

API- Ap2 3~2 aw 
-- 

Ifr ar P 
(2.46) 

the-n Apt > &2a1so; i.e. the failure front is a rarefaction front. It should be recalled that 
Apa is the change in mean density of a material which has failed by radial cracking, and 

Apt is the change of true density of a continuous material. The change of true density du- 

ring failure can be determined in accordance with the discontinuity in mean stress. 

It follows from Eq. (2.45) that in this case the inequality Idrt/dtl < ct will also be sat- 

isfied; i.e., the failure front propagates with subseismic velocity relative to the failed mat- 

erial, and a fortiori relative to the intact material, since ct < co. In this case, the front rad- 

iates elastic waves into the intact material. This is the fundamental case. 

If, however,&/& -&,/&<O, then -orI<-or2, Apl<Apz and I&t/&l > ct. This 

case can occur when the failure originates in the region x > 1 and the law of motion of the 

failure front is at first determined completely by the elastic wave in the intact material, the 

inequality 1 drt /&I > co also holding, In this case the relation r = rib) is known from the 

elastic solution and the parameters of the motion right at the failure front, i.e., the functions 

ft(&) and fz(&) are determined completely by the relations on this front, i.e., by Eqs. 
(2.37) and (2.39) (u. supra). It should be noted that this mathematically possible case is 

physically admissible if the true transverse strain &eo behind the failure front does not ex- 

ceed the geometric (fictitious) strain, the quantity u/r, for only in this case can radial crack- 

ing occur physically. Therefore, in this case a condition which reduces to the following in- 

equality must be satisfied: 

(2.47) 

If this inequality is not satisfied, then starting at the point where it is first violated, the 

law of motion z = rt(7)must be constructed differently, in such a way that an elastic wave 

is radiated by the front x = x1(7), but does not by itself determine the law of motion of the 

front. 

The case in which ct < Idrt/drl < CO is not possible. In this case, the line r = rt(t) is a 
apace-like manifold for Eq. (2.32); i.e., from each point of this line the characteristics of 

both familiea fall in the region where 7 increases. An analogous situation obtains with rb 

gard to the characteristics 7 - x = const and T + x = const of Eq. (2.4) for the cases &t/d: 
> 0 or dr, /dt < 0, respectively. Therefore, the solution of the problem in both the regions of 

failed and intact,material becomes non-unique (see the analogous situation in the problem of 

an explosion in soft soil [II]). Th’ IS means that at the time when the state Idr,/dtl = co is 

reached (if, of course, the condition (2.47) is satisfied up to that time), the velocity of the 
front must chsnge discontinuously, becoming less than ct in absolute value. If the condition 
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(2.47) is violated earlier, this velocity change of tbe front must take place at the time when 

the condition is violated. 

3. Before going on to the anaIysis of the system of functional-differential equations 
(2.36), (2.37), (2.39) and (2.40) and to the construction of an algorithm for its solution, we 
shall examine the energy equation for the failure front. As is usual, this equation can be 
reduced to s chock adiabat (Hugoniot) having the form 

81 --es-- ._!._ ( 1 - 
2 PI 

- -J-) (=p, + =,,I = 0 

where cr and &r are the internal energy per unit mass of the intact and failed material, 
respectively. By virtue of the fact that the adiabatic and isothermal eIastic moduli of sol- 
ids differ only slightly as a result of the smallness of the coefficient of thermal expansion, 
they can be considered as identical and the internal energy is separable [12]. This gives 

El = 
PC 

+ -$ +EOm) 
(3.2) 

2@-i%p)P a 
=rtn 

ez=.@j- -;-&fJ(T?f ;‘t3, 
P 

(3.3) 

where co(T) is an additive part of the internal energy depending only on the temperature T. 
The quantitye, is the total surface energy of all the cracks contained in a unit volume of 
the failed rock. It is proportional to the total surface area of these cracks. Substituting (3. 
2) and (3.3) into (3.1) and using the expressions for l/p, and I/p, in terms of ut and s2, 
we obtain 

(Qr, + w2 + @r, - =*I2 
18 @ + “Is FL) 6~ 

- g + p [eo (Tl) - 80 (Ts)l - 

- 8, - + (or, + br,) ( $$- - 9) = 0 

Eliminating the difference au, /& - duJc% with the aid of (2.44), we obtain 

(3.4) 

After carrying out some trausformations, we find from this 

pco”2T’~~_4T’) 1% - (1-W @., - Ql - 8, + P [so VI) -co v-4 = 0 (3.6) 

By virtue of the fact that the failure takes pface rapidly, this process may be regarded to 
be adiabatic, sad, inasmuch as it is irreversible, it must he accompanied by an increase in 
entropy. In the model under consideration the entropy S per unit volume is 

(3.7) 

The temperature changes during failure are ordinarily small; it can be considered, there- 
fore, that pe,(T) = CT + const and that the surface energy does not depend on temperatnre. 
Then (3.7) becomes 

S=ClnT++. +eonst (3.8) 

where C is the specific heat per unit volume of rock. 
The change of entropy during failure is determined by Eq. 

s2 - s1= c In 3+* (3.9) 

(in the intact state E, = 0). 
By the second law of thermodynamics 

sz - s, > 0 
Using the relations (2.44) and (2.45), Eq. (3.6) can be reduced to the form 

(3.10) 

E, + C (Ta - 25) = hIa 
212 (3 - 472) pclr 

i+ (1-2?)/(1-r2) 
(Cl I c*)” - 1 1 ~a, c,rdrr/dt (3.11) 
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Determining 7’1 /Tz from this result aud substituting into (3.9), we obtain (3.10) in the form 

From its physical meaning as is a positive quantity. The left-hand side of (3.12), con- 
sidered 88 a function of as/CT2 for positive values, has a minimum at e,/CZ’, = A/CT 
which is equal to A/CT,. Then the condition (3.12) will be satisfied for all possible e, , 3 
>/ 0 if the inequality A > 0 is satisfied, i.e. for 

i+ (~-2272)/(4--r) >o 

(Cl / c*)2 - 1 
(3.13) 

As will be shown below, the quantity E, is extraordinarily small compared to A. Accor- 
dingly, the condition (3.12) is equivalent to (3.13). The latter reduces to the inequalities: 

I c* I < Cl, co = Cl ( ~2fy)“z < 1 c* 1 < co 

If, however, the relations ct < IceI < co are satisfied, the inequality (3.13) (and then al- 
so (3.12)) will be violated; i.e. the solution will be thermodynamically inconsistent. 

The thermodynamic limitations on the velocity of propagation of the failure front which 
have been obtained agree exactly with the limitations established above from purely mathe- 
matical considerations based on the requirement of uniqueness of evolution of the solution. 
This agreement is striking, although an analogous situation is well known in a simpler 
case, that of gas dynamics 1131. 

Let us now estimate the order of magnitude Ed. 
distance r = 

As the failure front passes at a given 
r 

dimension 1. ti 
let the radial cracks which occur split the rock into blocks with average 
e surface area of a block normal to the radial direction will equal k12, where 

k * 1, and the number of blocks N will be determined by the relation N = 4nr12/kZ2. The 
perimeter of a block equals 4‘1, where [* 4, so that in the volume 4rrrtxArt, the total area 
of lateral surfaces of all the blocks equals N [ IArt, 
in forming this surface equals aN[lAr,, 

and the total surface energy expended 
where & is the unit surface ener for the rock. 

The surface energy of the rocks per unit volume equals aN&Art: 4trr12%,, i.e., is 

Es=--4 a Fa 
kl 1 (3.15) 

If it is assumed that temperature changes do not occur during failun, i.e. that all the 
mechanical energy which is lost at the failure front is expended in the formation of the new 
surface, we obtain the estimate for 1 

(3.16) 

The ma 
!Y 

itude of _U for rocks, gypsum, calcite, corundum, etc., varies from 40 to 1500 erg/ 
cm2 [ 14 , i.e. from 4.. 10-S to 1.5 * 10-s kg/cm. The magnitude of pcu 2 is of the order of 105 
kg/cm2, a 
kg/cm2 [15 . Yf 

the order of magnitude of tr + varies from several tens to several thousands of 
Therefore, the maximum value of I is of the order of 

1 
max apcer 10-s. 105 

max - CM = 1 CM 
(min Q2 -10a 

If, however, the quantities substituted into (3.16) are not the extreme values, but those 
corresponding to a grven materia1, then considerably smaller values are obtained Thus, for 
example, taking glass, we have.@* 130 erg/cm ?= 1.3 - 10m4kg/cm according to (141, and 

pco 2 -8 * IO5 kg/cm2, o+ * 250kg/cm2 according to 1153 so that 1+ 1.6 . IO” cm. 
This shows that a large amount of cracking would he required for absorption of all the 

energy A, so that the dimensions of the blocks into which the rock is split turns out to be 
extremely small. Actually the dimensions of the blocks are many orders’of magnitude larger 
than what is obtained under the assumption made above (these dimensions are no smaller 
than the dimensions of the natural inhomogeneities of the rock), so that the part Z, of the 
energy which goes toward formation of the surfaces will be a negligibly small part of the 
energy loss A. The energy loss is almost entirely converted into heat (see (3.11)). The re- 
sults which have been obtained are in complete agreement with the data of the paper 1141, in 
which it was established by direct measurement that the energy expended in formation of new 
surface in the failure of solids is insignificantly small compared with the work done in cau- 
sing failure, which is basically converted into heat. A case in which the fracture strength Q+ 
is anomalously small may constitute an exception. Even this case is improbable, since the 
quantity is also very small for weak materials. For crystals the strength is related to the sur- 
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face energy by Polanyi’s formula [I61 

5*2 a=-a 
2E 

(3.17) 

where E is Young’s modulus and a is the interatomic distance. It is curious to note that 
this formula agrees with (3.16) up to a numerical factor if u is replaced b 1. For crystals, 
B+ is significantly larger than for rocks. Therefore 1 for rock is obtained arger by (3.16) P 
than the interatomic distance occurring in (3.171. 

We shall make one more remark of a general nature. The scheme for the solution of the 
problem of brittle fracture of rock developed here does not permit the determination of the 
dimensions of the blocks into which the rock is split by the cracks. As shown above, the 
role of surface energy in the failure process is insignificant. Therefore the dimensions of 
the blocks must be determined by using other mechanisms. At the present time, no rational 
proposals in this direction are known. However, there do exist some empirically established 
facts which should be considered in solving the problem. The experiments of Kuznetsov in 
the investigation of surface energy [14] h ave revealed the following fact. If fracture of a 
crystal of some material takes place under the action of a specified loading, the character- 
istic dimension of the pieces into which the crystal splits is proportional to the square root 
of the area to which the pressure causing fracture is applied. If it is assumed that this cir- 
cumstance also holds true for the present problem of the fracture of rock, then, since the 
failure stress at the front r = rl(t) will depend only on r 
of the blocks 1 at a distance rt will be proportional to t t 

/r. = z1(7), the average dimension 
e square root of the area of the fail- 

ure front, i.e. 

?L, 
5, 

_f_!2_ , F , ~2 

5* * 
= roKl (q, .) 

where the form of the dependence of the coefficient Kt on x1 is determined by the dimension- 
less combinations found from the parameters characte 

On the other hand, in experiments with loess soils 
‘z’ng the medium and the charge. 

‘tl 3 , it was observed that under geom- 
etrically similar conditions and for the same explosive the dimensions I of the blocks were 
actually proportional to the scale of the phenomenon, i.e. to the radius of the char e r 
This means that the property of the failure of crystals given above also holds for ie &lure 
of sizable volumes of rock under ex 
explain the physical nature of the lpi 

losive loading. However, these empirical rules do not 
p enomenon. Therefore, the question of the theoretical 

determination of the dimensions of the blocks during fracture of a solid remains unanswered. 
Attempts at solution of this problem must, of course, take into account the fact of the exis- 
tence of the geometric similarity in fracture expressed by the relation (3.18). We remark in 
this regard that the relation (3.16) does not satisfy this geometric similarity. Therefore, the 
presence of the similarity in experiments indicates once more that the role of the expendi- 
ture of energy in the formation of new surfaces during fracture is an unimportant one. 

4. We shall now turn to the analysis of the mathematical problem to which the original 

problem has been reduced. That it, we shall analyze the Eqs. (2.361, (2.371, (2.39) and (2.40). 

In this system one of the unknown functions it occurs in the arguments of the others, 
and this complicates the solution procedure. If, however, the solution of the system is known 

in a small vicinity of the point 7 = TV, x t = 1, where 72 is the time when the failure front 

starts to move outward from the surface of the cavity, then the problem of construction of 

the solution of the system reduces to a sequence of initial value problems for certain syst- 

ems of ordinary differential equations. 

The solution in the vicinity of the point 7 = r2, x1 = 1 can be constructed by expanding 

all the unknown functions in series and substituting them into the system, which is then re- 

duced to a set of algebraic equations for the determination of the coefficients of the series 

expansions. A number of the coefficients of the series expansions can be found directly from 

the system without actually substituting the series. Indeed, for 7 = r2, ~2 = 1 we have 

%=%u=zz-1, Et = %1”= %I, = qz, - 1, Ez = Es” = %zo= qtz + 1 
By virtue of the re 

= [ , 
uirement of continuity of the displacements on the characteristic [= 

the 

f +o ) 

values off( K ‘4‘ and f ( 1 must be continuous on it; i.e., the values of f(col and 

may be cmsidered as known. We then find f”f&) from Eq. (2.36) for [= to and the 

value of ft@tol+ f&t.& from (2.37). 
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In the equations for the displacements and stresses, only the sum ft([t) + f&z) occars. 

Therefore, one of the quantities ft ([to) or f.&zo) can be specified arbitrarily (it can, for 

instance, be set equal to zero). After that the difference ft ‘([to) - fz’(tso) can be found 

from (2.40). 
We now note that at the initial time of formation of the failure front, the velocity of the 

front is zero. As a matter of fact, the stress og remains continuous across the characteris- 

tic c= 7 -x = r2 - 1. On this characteristic not only f(t) and f’(t), but also f”@) will 

remain continuous. This means that o, will also be continuous. But since the value of -0, 

on this characteristic for z = 1 is equal to the pressure in the cavity which changes con- 

tinuously for 7 = TV, the stress cr, on the failure front must be continuous at the initial 

time. It is clear from Eq. (2.44) that the value of r%/dr must then experience a discontinu- 

ity at the failure front, but it follows from Eq. (2.42) that the initial velocity of the failure 

front will be zero. The case in which cr+ = 0 is an exception requiring special consideration. 

This case was examined in the paper [9] under the assumption that there is no discontinu- 

ity of the functions at the failure front. 

Thus in the relations (2.39), we have xi’= 0 for T = 72. If now Eq. (2.37) is differenti- 

ated with respect to T and T is set equal to ~1, a relation is obtained which contains, in 

addition to known quantities, ft’([to) and f2’([20). Since the difference of these last quan- 

tities is known, they themselves can be found, As a result, all the quantities f “(co), jr 

(&o), fi’(tio), Mf,d, f/(&o) =d x1*(7-2) are now known. This information is insuffi- 

cient for the construction of the asymptotic solution. In addition, it is necessary to know 

at least the quantity xt”(~J. To find th is quantity it would be necessary to differentiate 

Eqs. (2.36), (2.37), (2.39) and (2.40) and set 7 = 7,. The four equations obtained in this 

fashion will contain the unknowns xt “(72 ), ft”@lo), fz”([zo) and f “‘c&b, together with 

known quantities. These equations would then allow determination of the unknowns. How- 

ever, this procedure proves to be impossible to carry out, for the quantities x1 “(7-t ), fi ” 

((to), and fz’%o) are infinite. Therefore, the construction of the asymptotic solution re- 

quires the determination of the character of the singularities in the unknown functions at 

the pointz= 1,~=7~. Investigation shows that these singularities are of the form 

X1”- (z - 22)-1’S, fl” - (Et - Et$‘* 

f2” - (Es- Ezo)-‘/‘, frv-(b-- El++ 
The coefficients of these asymptotic expressions may be easily determined. 

(4.1) 

We remark that in the vicinity of the point 7 = 73, f: = 1, the asymptotic solution cannot 
be determined from the equation of the failure front defined by the condition q(zt, 7) = err, 
where the left-hand side is given by Eqs. (2.6) and (2.10) because from these equations we 
can obtain the inequality 

[ (3~~co”st]z~l = -&r [(i - 2V) p + 4 (1 - rx) (2, + PO) + 

2==T, 

+ 2Y (3--473) f (Co)1 < -& [(l - 2V) p + 4 (i -Y) (&I + PO)1 <o 

and then if the relation x1 = xt(7) is determined in this way, we have x1*(7& < 1; i.e. 
this relation cannot be the law of motion of the failure front. An exception ie the case in 
which yz > K and the values of P, 2. and PO are such that the above inequality doea not 
hold. In these cases the asymptotic solution should be constructed using the relation x1 - 
= x1 (7) obtained in the manner just described. 

The procedure for continuing the solution will be explained with the aid of a graphical 

scheme (Fig. 2). 

Let the solution in the small triangle OAB be constmcted by the method described ear- 

lier. Here OA ia the initial put of the curve x = x1(7) and 7j - TV is a very small qaan- 
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z 
tity. We draw the characteristic 5, = q T - z = q’f3 - 1 = ttt from the 

4 \\ ’ point B. It intersects the curve z = r,(T) at some point A t. Since the 

Ai Lib!? solution in the triangle OAB is known, the function /t(ctl is known in 

B 
the interval (to < [,.$ [t t. The function ft([tl is then known in the Eqs. 

CJ - - (2.361, (2.37) and (2.391 which have only f(t), f2(tz2) and x1(71 as un- 
0 

‘ir, - 
knowns. Considering these three as functions of any oue of the variables 

5, 4‘1, 62, 7 (say, 51, and t ransforming the derivatives with respect to 

Fig, 2 
x 6, [t, e2 and 7 in the equations to derivatives with respect to the varia- 

ble chosen ([, in this case) using the transformation rules of the form 

d.../d& = (d.../d(? (d&/d[)-1, etc., we reduce these equations to a system of ordinary dif- 

ferential equations, for the determination of the four functions f(t) f&l, x1 ([l, 7(c). 

A complete set of initial data is available from the conditions at the point A, so that the 

problem reduces to an initial value problem for the system of ordinary differential equations. 

Having solved this problem numerically, we find the segment AA, of the line z = x1(7) and 

the function /(I$) in the interval & .$ e,< & t = 7~ t - rt(7Atl. The function f&2) is then 
known in the interval 

We now draw the characteristic 52 = ~zA t through the point A,. It intersects the line 

x = 1 at the point Et . Then in Eq. (2.40) the function f&2’) is known in the interval BB t, 

so that the equation reduces to an ordinary differential equation (with independent variable 

(So = q7 - 1) for the determination of the single function ft. The initial condition is deter- 

mined at point E. Solving this problem, we find the function ft for the new interval [te,< 

,< tt 4 &Bt . after which we draw through the point B, the characteristic Et = tt~t, which 

intersects the front x = x1 (7) further out at the point A,. The problem of determination of 

the function f(t), f2(&) and x t(7) for the segment A, A, is the same as the preceding one; 

i.e. all the functions are determined from the system of equations already described hut 

with new initial conditions given at the point A, and with a new interval of variation of the 

independent variable adjacent to the previous interval. After solving this problem, we go 

back to the line x = 1, etc. 

By continuing this process it is possible to advance the solution of the problem as far 
as desired. However, the following must be kept in mind in the process of solution. The 
crack front continually radiates elastic waves. Therefore, the intensity of the discontinuity 
at this front and the front velocity decrease with time. Therefore, at some time the inten- 
sity and velocity of the front go to zero. The continuation of the solution beyond that time 
is carried out differently. It can be seen that at this time x1’= 0 and by continuity x1”< 0 
so that if the procedure were continued, the front would begn to move backwards relative to 
the particles, “restoring” the failed material, which destroys the physical meaning of the 
solution. Therefore, at the time under consideration, it is necessary to set x1’= 0 and to 
drop Eq. (2.361. 

The solution obtained in this way corresponds to the fact that no new failure of material 
occurs and that the stress ugat the boundary o’f the failed region toward the intact material 
falls off from the value us . 

Later either this stress remains positive and the solution is to be extended in the man- 
ner described to 7 = 00 (asymptotic formulas are easily obtained for large values of 71, or 
there cornea a time when this stress 

$ 
es to zero. After this time, the condition x1’= 0 must 

be dropped and replaced by Eq. (2.36 , setting& = 0 therein. The solution obtained corres- 
ponds to the fact that as a result of the change in sign of 00 on the boundary of the failed 
region, this boundary begins to move inside the failed material closing up the cracks, so 
that a compressive stress og appears in the material. In what follows, the boundary x = z 
(71 generally oscillates about the position to which it tends as 7 + 00. If during this osci - *I 
lation it goes beyond the true boundary between the intact and failed material, new fractures 
are possible and the procedure for the construction of the solution with cracking must be 
continued. 

Finally, it is also necessary to verify whether the solution in the failed region satisfies 
the condition -2-r* <a,<a*. If at any time one of these conditions becomes an equality 
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somewhere (the left one is more likely to do so), then from this point on it is necessary to 
construct a new failure front at which the material split-up by radial cracks fails again, by 
crushing. Generally speaking, this possibility is also unlikely to happen since all the stres- 
ses in the solution fall off with time. Therefore, if failure by means of shear (crushing) 
does not occur at the start, it is doubtful whether it can occur later. Nevertheless, verifi- 
cation is necessary because the solution of the problem can only be constructed numerical- 

ly* 
Let us now explain how the solution is to be constructed if the condition ag= V+ is 

reached at some point in the region n > x1(7). If 
ug(z,, 7) = c*, there is a part on which Ix* 

on the curve determined by the relation 
‘1 > cc, and the condition (2.47) is satisfied, 

then above this part the functions ft and fz are found from Eqs. (2.371 and (2.381 in which 
f(o and x1(~) = x2 are known. The continuation of the solution for the succeedin 

tB 
intervals 

of variation of the arguments of the unknown functions corresponding to crossing e ends 
of the line x = x+(-r) (as a result of either violation of Eq. (2.47) or the attainment of the 
condition Ix +‘I = co) proceeds in a manner analogous to that described above. The only 
difference consists in the fact that a line z = x1 = x,(7) generated at an interior point of 
failed material has two branches (two fronts, one propagating away from the cavity, one to- 
yard it). For the branch on which x*‘> 0 the procedure for solution is the same as that des- 
cribed above, except that the determination of the function ft is not carried out from a con- 
dition at x = 1, but from the corresponding condition on the branch n+‘< 0. However, this 
second branch causes a difference from what was given above, because on it the front Y = 
= X+(T) reflects back toward the cavity the elastic wave which moves out from the cavity 
into the intact material. Therefore, in the formulas for the solution of the problem for the 
intact material, a function corresponding to this reflected wave must be added. The formula 
for the displacements takes the form 

(4.2) 

The reflected wave either interacts with the cavity, if there is no failure in the vicinity 
of the cavity, or else with a failure front moving out from the cavity. The problem is thus 
made considerably more unwieldy, since it now requires construction of three failure fronts 
and five functions describing the motion in the failed and intact materials. In principle, 
however, the problem is solved as was described above for the simpler case. A special com- 
plication arises because of the fact that the failure front diverging from the cavity and the 
one converging toward it cause the interval in which the successive initial value problems 
are solved to become shorter and shorter as the fronts get closer and closer together. The 
intervals go to zero at the point where the fronts meet. This requires the development of a 
special method of calculation for the vicinity of this point. 

We refer to the system of interactions in Fig. 3 for clarification of what has been stated 
Here AB is the failure front moving outward from the cavity; CB and DE are the converging 
and diverging fronts which develop at au interior point and which correspond to the phase 

when I&‘] < c ; CD is the part of these fronts corres 
the phase Ix+ ‘j > c ; the various straight lines are c K 

onding to 
aracteris- 

tics; and the point 
ure fronts. 

# corresponds to the meeting of the two fail- 

Fig. 3 

Let us now pass on to the examination of the case in which 
the initial pressure is such that the point F falls on the line AB. 
Then, if pu,, satisfies the inequality (2.121 and if, moreover, puo 

> puuF, then at some time r2 the difference - pou - ag on the 
cavity becomes equal to - 25 and failure by means of s f, ear be- 

gins. A failure surface I = x2(7) begins moving from the surface 

of the cavity into the material. On the side of this front toward 

the intact material the condition 9 - og= - 27, is satisfied. 

If, however, poo > p. + y27* the failure begins at the initial 

time +T = 0. Any further consideration must be carried out separately for the case when the 

strength of the rock is quite large and the case when it is quite small compared to poo -p,,. 
In the first case the final radius of the failure zone is not very large compared to the radius 

ru of the charge. In the second case the radius is considerable. In the first case, the expan- 

sion of the cavity is also very sli&t md it is possible to continue the examination of the 

entire problem in Lagrangian coordinates since the differential equations which describe the 
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motion of the medium remain lineer in view of the smallness of the displacements and 

strains. In the second case, because of the considerable displacements in the vicinity of 
the cavity, the investigation in Lagrangian coordinates becomes inconvenient, for the line- 

arity is lost and with it the possibility of reduction of the problem to ordinary differential 
equations. 

We shall begin by examining the first case, On the side of the failure front toward the 

region of intact material, the condition u, -erg= - 27+ is attained. Behind the front the 
material either undergoes plastic flow or elastic unloading as regards shear strains. Some 
yield conditicm is satisfied for plastic fIow. The simplest one in the sense of making an ef- 
fective solution possible is a yield condition which for the case of radial symmetry reduces 
to 

b, - Olj -= - 2T*l (4.3) 

It is natural to suppose that the shear strength characteristic for failure by slip is not 

smaller than the magnitude rat which characterizes the friction at the surface formed by 
the shear crack failure; that is, it is natural to consider that the following inequaIity is sat- 
isfied: 

** z T*l (44) 

The failed material which is in a state of plastic flow will be described by the yield condi- 

tion (4.3) and bv Hooke’s law for the volumetric strain 

Substitution of (4.3) and (4.5) into the equation of motion (2.21 taking account of (2.31, 

leads to Eq. 

The general solution of this equation has the form 

u ~ F1’ (cl17 - x) - Fa (g1r + x1 
-t 

Fr (91% - x1 i- F, (et + 4 

2 X% + 

where Ft and F, are arbitrary functions of their arguments. The stresses are found from For 
mulas 

The functions F, and Fz must be found from the boundary conditions at the failure front 
and either the condition at the cavity if slip occurs right up to the cavity, or the condition 
at mt unloading front which separates the region occupied by the failed material in which 
slip occurs plaetically and a part in which elastic unloading in shear takes place. Such an 
unloading front may, in general, occur. 

Let us consider the conditions at the failure front. We have for the stresses ahead of and 
behind the front, respectively, 

(4.91 

Using the condition of continuity of the displacements and the thsorem of impulse-tuomen- 
turn, we obtain with the aid of (4.9) 

Apt--Apt au1 aus %-%* = ---_= 
---=TF ar P Po*2 

(4.101 
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Considering (4.41, we conclude from (4.10) that for \c+I < cu(1 - 4/3?)” m c2, we have 

Ap2> ApI; i.e., the failure front will be a condensation front (will involve a positive jump 

in density). For leai > c2 it will be a rarefaction front. It appears natural from physical con- 

siderations to assume that the second case is impossible, for the friction forces decrease 

during failure (~a > T+ t ) and the possibility of additional compression arises. If this limi- 

tation on the velocity 1c 1 + is not made, then if the limiting state urt - og 

t 

= - 27, occurs 

at an interior point x > I the constnrction of the solution in the vicinity o this point be- 

comes non-unique. Indeed, the limiting state first occurs at a point where [c*I = 00 (the min- 

imum point of the line T = T (21 defined by the relation o,r (7, xl - ag,(~, z) = - 27* 1 and 

it can be assumed that in the vicinity of this point this line is an actual failure front up to 

the points where Ic+I = co, or else it is necessary to construct two branches of a failure 

front from this point satisfying the condition Ical < c2 (see the analogous condition for the 

case of failure by the formation of tension cracks). The assumption made above prescribes 

the choice of the second of these possibilities. If the first one is chosen, then by virtue of 

the fact that 

we have cre, < 08, andor <urz for ci < Ioil <de; i.e., the two stresses as well as 

the density decrease during failure, which seems improbable. 

Let us again examine the energy equation. Proceeding as in the case of failure by ten- 

sion cracking, we obtain 

C(Ta--1) = 2(;;r--$r) {1+~[[(1--/~~~)($)Z-1]-1+l]}~4.11) 

The condition of increase of entropy, i.e., the condition T2 - T, > 0, leads, by virtue 

of (4.4) to the inequality 

Ic,I<coJQ=Tz= cz, I%1 >co (4.12) 

That is, it once more leads in a striking manner to the inequalities obtained from the mathe- 

matical requirement that the solution of the problem unfold uniquely. 

It seems that this is related to the fact that the requirement of unique evolution of the 
solution of the equations of continuum mechanics can apparently be formulated as a condi- 
tion of positive change with time of some quadratic functional related in a certain way to 
the form of the equations, so that this functional is a monotonousIy increasing function of 
the entropy of the system which is introduced with the aid of independent thermodynamic 
considerations. It would be interesting to examine these questions in their general mathe- 
matical formulation. The solution of this problem would allow introduction of the concept 
of entropy by purely mathematical means for a given system of partial differential equations. 
The re 

9” 
irement of non-decrease of this entropy wouId then guarantee the unique solobility 

of prob ems for the partial differential equations. 
Returning to the present problem, we remark that thermodynamic limitations do not ex- 

clude the possibility IceI > c~, which leads to a rarefaction during failure, However, in the 
solution of problems, the limitation Ic,I < c2 suggested above should apparently be retained. 

We shall now assume that the shear is everywhere plastic behind the failure front. The 

condition for this is the pos_itiveness of the expression I’S of [Z], which reduces in the prc 

sent case (F (p) = const) to the condition 

In examination of the solution, the sign of A must be traced. It is necessary to construct 

a wave front behind which the shear once more becomes elastic starting with the point at 

which the relation A = 0 is first reached. 

We note that at the time when the unloading front overtakes the failure front no subse- 
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quent failure will generally occur. Indeed, since the velocity of propagation of disturbances 
in the unloading region is the same as in the intact material (i.e. is equal to co), the failure 
front should become a characteristic after it is overtaken. That is, its velocity should be- 
come co, since if the velocity of small disturbances on both sides of a strong discontinuity 
is the same, the velocity of the discontinuity itself can only be equal to this velocity of 
disturbances. However, in this case, the quantity orI - o,gr along the characteristic gener- 

ally decreases so that the condition (T - og = - 27, is not satisfied and the failure tea 
ses. It follows from what has been sat that I failure takes place, then the shear is neces- 9 9 

* 
;nr.p d 

lastic behind the front. An unloading front can arise either at the cavity or within 
e at e region and afterwards can overtake the failure front and suppress it. (It is true 

that a strong discontinuity will propagate along the characteristic which emerges from the 
point where the unloading wave overtakes the failure front). 

By virtue of the fact that Ic+\ < cq< co a failure front arising at the surface of the cav- 
ity radiates an elastic wave into the intact material even in the case when the failure com- 

mences at the initial instant 7 = 0 (pot, > po + ye27+ 1. As time increases, either a wave of 
unloading arising behind the failure front overtakes it and stops the failure or this does not 
occur. However, because of the decrease of the stresses tr,t and cr,gt, a time must come in 

either case when the point or1, ag, reaches the point B (Fig. 1) and at that time the failure 

front bifurcates; a front moves ahead on which failure by the formation of tension cracks oc 
curs, and behind it a front propagates on which a second failure by crushing occurs. 

The procedure for the construction of the solution up to the time of bifurcation is com- 
pletely analogous to the one considered above for the case of failure by the formation of ra- 
dial cracks. In order to continue the solution beyond the time of bifurcation of the front, the 
asymptotic behavior of the solution of the problem in the vicinity of the bihcation point 
must be examined by means of series expansion about this point and determination of the 
type of possible singularities of the unknown functions. After this the procedure of reduo 
tion of the problem to a set of initial value problems for ordinary differential equations must 
again be applied. The suitable systems of functional-differential equations are easily writ- 
ten out by using the formulas given above. However, we shall not do this here. The construc- 
tion of the solution for the late stages when the failure fronts decay can also be carried out 
by the method described above for the case of a single front of failure by formation of radial 
cracks. It is only necessary to remark that after the velocity of the crushing front goes to 
zero, no motion to restore it takes place and it must be considered a contact discontinuity 
after that. 

If a wave of unloading occurs, the equations of motion behind it are determined by Hoo- 

ke’s law in the form 

c$,. = a#.* $ h g - 2 + 2 yc ( )+N%-%) (414) . 
&l=a”,+h(~--$+2+q+2~53 

where tr,+, UB+, &,/dr, and u+/r are the values of the stresses and strains on the unloading 

front, which depend only on X. 

Substitution of (4.141 into the equation of motion (2.21 reduces the latter to the form 

(4.15) 

where t+~(xl is expressed in terms of or+, ag+, du,/&, and u+. It is easy to write out the 

general solution of this equation 

where t//t and $r2 are arbitrary functions and U. (xl is a solution of the nonhomogeneous Eq. 

(4.151, which is expressed in terms of (#(xl by quadratures. 

(4.171 

In the solution of the boundary value problem, cr,+, a,y+, (3u+/&, and a+ are expressed in 

terms of the solution in the region where plastic shear occurs and of the unknown law of 

motion of the unloading front x = x+(7 1. Therefore, in the formulas for the unloading region 
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+I* $2’ and x,( 7) are undetermined. There are three equations in these three functions: 

the unloading condition A = 0 and the two equations of continuity for au/& and a which 

guarantee the continuity of stresses and strains for x =x+( ~1. The problem for $t, $2, and 
x+ which arises in this way is solved jointly with the problems for the failure fronts des- 

cribed above by the method of reduction to a set of initial value problems for ordinary dif- 

ferential equations. 

For porous materials of low strength, the yield condition should be taken in the more 

general form 

1, = [k (p - PO) + b12 (4.18) 

In the case of central symmetry, this reduces to the relation 

Ue = QUr + B (4.191 

The case of rock with high strength considered above corresponds to U= 1. The limiting 

value of U, which corresponds to an elastic material (Hooke’s law) is equal to U, = 1 - 2~ 3 

Therefore, the range of possible_values of a is determined by the inequalities 

1-2~~ = a,<a< 1 (4.20) 

Like the yield condition, the strength condition (failure condition) for the general case is 

written in the form 

1, = Q, (P - PO) (4.21) 

which in particular can be reduced to the form (4.19) for porous rocks under moderate stres- 

ses. Experimental data on the strength of a number of rocks (limestones, shales, Carrara 

marble, and others) published in [I?] confirm what has been stated and also the comment 

made in Section 1 on the decrease of the function @(p - po) as p increases, for hard porous 

rocks. 

The procedure for construction of the solution for the case of weak rocks is a combine 
tion of the methods used in the present paper and in [ 111. 

We note that for nonporous and notvery strong materials the relation between hydrosta- 
tic pressure and volumetric strain is linear and reversible. Therefore, in the initial stage 
of the motion, as long as the velocity of the failure front is commensurate with the acoustic 
velocity and the motions are still small, the problem can be solved in Lagrangian coordin- 
ates. Only when this velocity becomes small so that the compressibility can be neglected 
[18] everywhere in the failed zone is it necessary to transform to Eulerian coordinates and 
to use the method of the paper [ll]. F or orous materials which have considerable irrever- 
sible compressibility, the method of [II] 

p 
must be ap lied from the very start. 

Finally, there is a difference from the problem of P ll] in that the yield condition and the 
failure condition do not coincide. Therefore, the relation (4.211) describing the process of 
radiation of an elastic wave during failure is different in the present case from what was 
used to describe the motion behind the shock wave. 

It should be remarked that in the case of nonporous materials when a f 1 in the yield 
condition and it is necessary to use Lagrangian coordinates for the initial stage, the funda- 
mental equation for II is, unfortunately, not integrable in the general form with two arbitrary 
functions. For this stage it is possible to set a= 1 and to obtain the solution with some er- 
ror, in the hope that the initial stage is of short duration and the error does not have time to 
accumulate. 

We make a final comment in the following connection. In [4] it is pointed out that for com- 
paratively small stresses, as experiment abows, rocks exhibit plasticity without failing, so 
that in the vicinity of the leading front of the disturbances the wave parameters damp out 
more strongly than follows from the solution of the problem under the assumption of elastic 
behavior of the material. 

The asymptotic theory of[4] h s ows that plastic deformation is localized in a narrow lay- 
er adjoining the leading front of the disturbances. In this layer the parameters of the motion 
increase sharply up to a maximum and then change smoothly. ‘Ibis corresponds to the case 
where a=a, in the yield condition, so that the front of transition to the plastic state is lo- 
cated very close behind the lead characteristic. 

In this case, the wave of unloading of shear deformation also follows closely behind this 
characteristic, so that the unloading condition au/& - w/r = 0 is satisfied near the point 
(behind it) where du/& = 0. Since the layer in which the parameters change sharply and ar- 
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rive at a maximum (i.e. unloading atarte in it) ia very thin, it is possible to neglect this 
thin layer in constructing the solution in the much larger region back of it. ‘Ihat is, it is 
possible to consider that ri 
turbances crro, cre and du, $” 

t up to the lead characteristic of the linear Eq. (4.151, the dis- 
dr are given as functions of x. These distributions may be ta- 

kerneither as those given in f4] by 
tions $ 

an asymptotic analysis, or from experiment. The funo 

las for b 
and Uc (xl in Eq. (4.161 are then known. In the rest of tbe construction, the formu- 
e elastic wave in the intact material, which are needed in the analysis of the fail- 

ure fronts and of tbe motion of the rock behind them, contain not only the direct wave radia- 
ted by the failure front, but also a wave reflected from the unloading wave, i.e., from the 
lead characteristic. This reflected wave corresponds to the function +x( 7 + xl. It is possi- 
ble to do all this, but it is not necessary, for the reality of the occurrence of plastic flow 
in the vicinity of the front in [4] has not been proved. It is only a hypothesis which may not 
correspond to the actual situation. It is not ruled out that the effects observed in the experi- 
ment mentioned in f4] can be completely explained within the framework of the scheme adop- 
ted in the present paper. 
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